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Solitons in anharmonic chains with ultra-long-range interatomic interactions
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We study the influence of long-range interatomic interactions on the properties of supersonic pulse solitons
in anharmonic chains. We show that in the caself-long-range(e.g., screened Coulomimteractionghree
different typeof pulse solitons coexist in a certain velocity interval: one type is unstable but the two others are
stable. The high-energy stable soliton is broad and can be described in the quasicontinuum approximation. But
the low-energy stable soliton consists of two components, short-range and long-range ones, and can be con-
sidered as a bound state of these components.

PACS numbeps): 42.65.Tg, 63.20.Ry, 05.45.Yv

As is well known[1,2], anharmonic chains with interac-
tions betweennearest neighborcan bear pulse solitons, HZE [
compressive localized excitations that are very robust and "
propagate with supersonic velocities without energy loss. 1 )
Because of their coherence, the solitons play an important + 2 mE>n Imn(Un=—Un) } @
role in determination of dynamical, thermodynamic, and
transport properties of one-dimensional anharmonic systemgith the anharmonic interaction¥(w)=w2/2—w3/3 be-
[1]. Among other things, t_hey have been invoked in order toeen nearest neighbors and the harmonic LRIs,
explain energy transport in DNfJ. =J(e*—1)e M "/|m—n|s between all particles of the
However, the interatomic interactions i@al systems&re  .pain. HereJ characterizes the intensity of the LRI's,
strictly speakinglong-ranged In particular, the DNA mol-  \hereasy ands determine their inverse radius. The param-

ecule contains charged groups with Coulomb interactions bestersy ands are introduced to cover different physical situ-
tween theni4]. Therefore, it is essential to clarify how the ations from the limit of nearest-neighbor interactions>(1
long-range interaction$LRI's) can affect the soliton fea- s>1) to the limit of ultra-long-range interactionse& 1

tures. It is generally believed that such interactions are very s=3). The Hamiltonian(1) generates equations of mo-
small (in comparison with the anharmonic interactions be-;ion of the form

tween nearest neighbgrand can be safely neglected. How-
ever, as we show in the present Rapid Communication, evep»
very weak LRI's cause new qualitative effects if the interac-
tions areultra-long-ranged A striking illustration is a chain dt?
with pure (not screened Coulomb interactions between
charged particles where tlseund velocity is infinite regard- =0, @)
less of the intensitpf these interactions. As a consequence ) )
the pulse solitons merely do not exist in such a modeyvherewn=un+1—un2are relative displacements af(w)
(whereas the pure Coulomb interactions do not preyght =dV(w)/dw=w—w".
the existence of immobile intrinsic localized modes therein ~ We assume in what follows that#0 (the casex=0 has
Generally, arbitrary LRI's introduce into the systermew  already been considered in RE)); in doing so we studied
length scalethe so-called radius of the LRI’s. If the radius MOst extensively two cases: the physically important
of the LRI's far exceeds the interatomic distance, the comScreened Coulomb interactions<3) and the Kac-Baker
petition between the length scales manifests itself in a numtRI'S (s=0). However, in view of the facttested numeri-
ber of qualitative effectgsee Refs[6,7] for the exponential- cally) that all cases with &s<3 lead to qualitatively the
law LRI's and Refs[8—10Q| for the power-law LRI'$. The same results but the case 0 allows also analytical consid-
greater the radius of the LRI's, the more pronounced ar&ration, we discuss only the case 0 from this point on.
these effects. In the quasicontinuum limit, treating as a continuous
In this paper we show thawo types of stable pulse soli- variable  [n—xX,w,(t) —w(x,t),Wy(t) —e™ Maw(x,t)]
tons can coexisin a certain interval of velocities in anhar- and keeping formally all terms in the Taylor expansion of
monic chains withultra-long-rangeinteratomic interactions €™ ™%, the equation of motiori2) for s=0 can be cast in
even if they are very weak. Let us consider a chain of equallghe operator forni7]
spaced particles of unit mass whose displacements from 5
equilibrium areu,(t) and the equilibrium spacings are unity. 2 . X
Tﬂe Hamiltoniar;](o¥ the syster?1 is given bﬁ/ ’ ’ [98=3Q(a,d) Jwix,t) —4 Smhz(f) Fw)=0, (3

(dun

2
dt ) +V(un+1_un)

N| =

n

+2F (Wp) = F(Wns 1) = F(Wo_ 1)+ 2 Jmn(Wo— W)
m#n
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FIG. 2. Shapes of pulse solitons found numerically for different

FIG. 1. Energy of the pulse solitons vs velocity found numeri- Velocities ata=0.17 and)=0.0172.

cally for different values ofx andJ (the value ofJ was chosen to
get constantt=1.515; see stars in Fig.)3¢=0.3 andJ=0.05
(dotted-dashed line «=0.17 andJ=0.0172 (long-dashed ling
a=0.1 andJ=0.0062(dashed ling «=0.05 andJ=0.0016(solid
line).

where

(e ) 4 sintf(d,/2) 4)
Q) = e ) snf(a/2)

is a linear pseudodifferential operator, where2 sinh(/2).

The speed of sound(which is an upper limit of the group

velocity of linear waves determined by the expressia?
=1+J(1+e %) /(1—e 9?2, grows indefinitely asa de-
creases.

limit of nearest-neighbor interactiorfsINI’'s) for which Eq.

(3) reduces to the Boussinesq equation. It is well known that
this equation has a sech-shaped soliton solutwfe)
=—1.5(2—c?)/cosH(o2), wherea= \3(vZ—c?) is the in-
verse soliton width. As indicated above, the enekyy (v?
—¢?)%72 of these solitons is monotonic function of the veloc-
ity, which means that there is only one soliton state for each
given value of energy or velocity.

In the case of smalk the soliton properties become much
more interesting6,7]. As it was recently shown7], two
branchesof stable supersonic pulse solitons should be dis-
tinguished in this case: low-velocity and high-velocity soli-
tons, separated by a gap with unstable soliton states.

The solitons of the low-velocity branch are brogtey
have a width much larger thansl/), and can be described

We are interested in the stationary soliton solutionspy Eq.(5) in the approximation 42— s )w~ —s2w. In this

w(x,t)=w(x—vt) propagating with velocity. In this way

approximation the soliton solutions exist in a finite interval

we reduce our problem to a nonlinear eigenvalue problemnys velocities, c<v<v,,=(4c>*—1)/3, and change their

with v being a spectral parameter. Indeed, substitutirg
—vt and using the continuum approximation 4 k/2)
~ g2, we can write Eq(3) in the form[7]

<a§—si><a§—s%>w<z>=l—fw%—KZ)wZ(z), 5
\

where the parametess. are given by

1 vZi—1
2 _ 2
e
S ZlK 12 72
e A
+ k=12 > + 48k (- (6)
\" \"

The parametes. is finite at all velocitiess=c and tends to
V12 forv—o. The parametes_ vanishes av=c and tends
to k for v—«. Using the Green’s function methd@8] one

shape from the sech-form at=c (see the case=1.6 in
Fig. 2 to the crest-fornw(z) ~exp(—a|2)/2) forv—v,, (see
the caser=1.652 in Fig. 2. Such crest solitongr peakong
were first introduced in the theory of shallow water motion
[11,12.

The solitons of the high-velocity branch are made up of
two componentsw=wg(z) +w,(z), where the short-range
component

2.2 s,z

S*SV (1—27)secﬁ< V127~

Wg(Z)~ —

) )

is dominant in the center of the strain, while the long-range
componentw, (z)=— y (s> v?/12)exp(s_|Z) is dominant
in the tails (see the case&=1.75 in Fig. 3. It should be
stressed that this division of the soliton body into two com-
ponents is not just a mathematical trick. Our present numeri-

can show that stationary soliton solutions exist only for su-cal simulations testify that the solitons of the high-velocity
personic velocitiey >c. The properties of these solitons are branch can be considered lasund state®f the short-range

determined by the ratio of, ands_. In Fig. 1 we plot the
energy of the soliton solutions of E¢B), which were found
numerically using the method developed in Ré&f.

The soliton energy growsonotonicallywith the velocity
in the case of large (see, e.g.¢w=0.3 in Fig. 1. In this case

and long-range components: they can be excited such that
the relative distance between the components oscillates.
However, such internal soliton oscillations are highly
damped and should not play an important part in the nonlin-
ear dynamics of the system. The parametds determined

the soliton properties are qualitatively the same as in théy the equation
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FIG. 3. Three regions of the system parameters with qualita-
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FIG. 4. Shapes of pulse solitons which coexist at the same ve-

tively different properties of the pulse solitons. Solid lines representocity v=1.64, wherea=0.05 andJ=0.0016. These solitons are
Egs.(9) and(10). The points, marked off as circles and diamonds, also indicated on the inset of Fig. 1.
were calculated numerically. Stars mark the parameters used in

Fig. 1.

YWAY?—2(A+2)yI3+1=3(A—1) z;\/l— 2y, (8)
+

with A= x?/s% . This equation, derived in Reff7], has been
analyzed there for small values dtnd «, for which it has a
unique solution at all values of velocity. It has been shown
that the interplay of the componems(z) andw, (z) results

a4

3
Ja(a@)=3 Y

(10)

with a,=0.16. Besides Eq10) we have found analytical
expressions for the soliton energy and impulse, all in very
good agreement with the numerical calculations. But we will
not present these cumbersome formulas in the present paper.
Instead, we just discuss below the results obtainedJfor
>J,(a) with the intent to demonstrate that the soliton fea-

in this case intamonmonotonicdependence of soliton energy tres in this regior(let us call itZ-region are qualitatively

H on the velocity(see, e.g., the case=0.17 in Fig. 2, so

different from those in thé-region.

that there is an energy interval where three soliton states with Indeed, wherd exceedsJ,(«) there appears an interval of
different velocities exist for each given value of energy. Asyg|gcities in which Eq(8) has two real solutions. They cor-

is shown in Ref[7], the low- and high-velocity statdsvith
dH/dv>0) are stable, while the intermediate stdteith

respond to two different types of two-component pulse soli-
tons which coexist at the same velocity &éndc in Fig. 4).

dH/dv<0) is unstable. By the statement that the solitonaccordingly, the dependence of the soliton energy on the
state is stable or unstable we mean throughout the paper ¥gjocity for J>J,(a) is not merely nonmonotonic but takes
dynamical stability. That is, when taken as the initial condi-g, aZ-shapedmultivaluedform (see, e.g., the cases=0.1

tion for Eq. (2) the_ stgble soliton state.preserves its shapegda=0.05 in Fig. 2. The possibility of such a dependence
energy, and velocity in the course of time. By contrast, théyas peen predicted in RdB] using a variational approach.
unstable soliton state is transformed with time into an approat that time, however, this prediction was met with disbelief
priate stable solitor(or it decays sometimes into several ynq considered as an artifact of variational approach. But as

stable solitons

we prove numerically in the present paper, #ieegion re-

To sum up the foregoing, there is a demarcation liny)y exists. In this region there is an interval of velocities

J1(a) which separates the plafe,J} into two regionssee
Fig. 3), namely: theM-region(with a monotonicdependence
of soliton energy on the velocityat J<J;(«) and the

N-region(with anonmonotonicdependence of soliton energy

on the velocity atJ>J;(«). Our numerical calculationsee
Fig. 3 validate the following estimation fa¥;(«):

4
3y(@)=0.23— —, @)

2
a,—a

with @;=0.25. The spectrum of stable soliton states is con-

tinuous and covers all supersonic velocities in ifveegion,

while it has a gap(an interval of velocities with unstable

soliton statesin the N-region. Emerging atl=J,(«) this
gap increases initially with growth od. However, closer

analytical examination of Eq8) shows that subsequently

—_— t=

2 — t=1000 v c
<
B
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FIG. 5. Demonstration of the dynamical stability of the two

this gap starts to decrease and disappears agaid at stable pulse solitonsa(andc in Fig. 4) which propagate with the

=Jy(a)>J,(a), where

same velocityw =1.64. Herea=0.05 andJ=0.0016.
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where three soliton states of quite different shafse® Fig. present paper. In this region there exists an interval of ve-
4) and energiesoexist at the same velocifyhe soliton state locities where two types of stable pulse solitons coexist at
with intermediate energyb(in Fig. 4) is always unstable. each value of the velocity. The high-energy soliton is broad
But the high-energy and low-energy solitorssgndcin Fig.  and has only a single component whereas the low-energy
4) are usually(when dH/dv>0) stable. The high-energy soliton consists of two components, short-range and long-
soliton on the low-velocity branch is broad and has a singleange ones, and can be considered as a bound state of these
component. But the low-energy soliton on the high-velocitycomponents. It should be stressed that this phenomenon oc-
branch and the soliton state with intermediate energy botR s even for LRI's ofvery small intensityhundreds times

consist of two components, short-range and long-range onegyss than the intensity of NNI's, as seen on Figifdnly the

The coexistence of two different types of stable pulse soliy,gius of LRI's is large enough. It is important that the co-

tons at the same velocity causes new interesting phenomengiqiance of two types of stable solitons does occur not only
e.g., the synchronous propagation of two solitons with QUIt§ . the Kac-Baker LRI's discussed in this paper; on the con-

different W|dths(see Fig. 5 . .trary, it is rather a common phenomenon. In particular, we
In conclusion, we show that the properties of pulse soli-

tons in anharmonic chains with the lona-ranae interatomi also have shown that it exists in anharmonic chains with
. . ; g-rang Q/veakly screened Coulomb interactions between charged par-
interactions are conveniently mapped onto ahleplane(see

Fig. 3). One can recognize in this plane three regions withtldes'

qualitatively different properties of the pulse solitons. The Two of us (Yu.G. and S.M. thank the University of
M- andN-regions were distinguished and discussed in RefsBayreuth, where the main part of this work was done, for
[6,7], whereas the&-region (that is the region ofiltra-long-  their hospitality. We also acknowledge the support provided
range interatomic interactionsis proven to exist in the by the DLR Project No. UKR-002-99.
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