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Solitons in anharmonic chains with ultra-long-range interatomic interactions
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We study the influence of long-range interatomic interactions on the properties of supersonic pulse solitons
in anharmonic chains. We show that in the case ofultra-long-range~e.g., screened Coulomb! interactionsthree
different typesof pulse solitons coexist in a certain velocity interval: one type is unstable but the two others are
stable. The high-energy stable soliton is broad and can be described in the quasicontinuum approximation. But
the low-energy stable soliton consists of two components, short-range and long-range ones, and can be con-
sidered as a bound state of these components.

PACS number~s!: 42.65.Tg, 63.20.Ry, 05.45.Yv
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As is well known@1,2#, anharmonic chains with interac
tions betweennearest neighborscan bear pulse solitons
compressive localized excitations that are very robust
propagate with supersonic velocities without energy lo
Because of their coherence, the solitons play an impor
role in determination of dynamical, thermodynamic, a
transport properties of one-dimensional anharmonic syst
@1#. Among other things, they have been invoked in order
explain energy transport in DNA@3#.

However, the interatomic interactions inreal systemsare
strictly speakinglong-ranged. In particular, the DNA mol-
ecule contains charged groups with Coulomb interactions
tween them@4#. Therefore, it is essential to clarify how th
long-range interactions~LRI’s! can affect the soliton fea
tures. It is generally believed that such interactions are v
small ~in comparison with the anharmonic interactions b
tween nearest neighbors! and can be safely neglected. How
ever, as we show in the present Rapid Communication, e
very weak LRI’s cause new qualitative effects if the intera
tions areultra-long-ranged. A striking illustration is a chain
with pure ~not screened! Coulomb interactions betwee
charged particles where thesound velocity is infinite regard
less of the intensityof these interactions. As a consequen
the pulse solitons merely do not exist in such a mo
~whereas the pure Coulomb interactions do not prevent@5#
the existence of immobile intrinsic localized modes there!.
Generally, arbitrary LRI’s introduce into the system anew
length scale, the so-called radius of the LRI’s. If the radiu
of the LRI’s far exceeds the interatomic distance, the co
petition between the length scales manifests itself in a n
ber of qualitative effects~see Refs.@6,7# for the exponential-
law LRI’s and Refs.@8–10# for the power-law LRI’s!. The
greater the radius of the LRI’s, the more pronounced
these effects.

In this paper we show thattwo types of stable pulse sol
tons can coexistin a certain interval of velocities in anha
monic chains withultra-long-rangeinteratomic interactions
even if they are very weak. Let us consider a chain of equ
spaced particles of unit mass whose displacements f
equilibrium areun(t) and the equilibrium spacings are unit
The Hamiltonian of the system is given by
PRE 611063-651X/2000/61~2!/1044~4!/$15.00
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1V~un112un!

1
1

2 (
m.n

Jm,n~um2un!2J , ~1!

with the anharmonic interactionsV(w)5w2/22w3/3 be-
tween nearest neighbors and the harmonic LRI’sJm,n
5J(ea21) e2aum2nu/um2nus between all particles of the
chain. Here J characterizes the intensity of the LRI’s
whereasa ands determine their inverse radius. The param
etersa ands are introduced to cover different physical sit
ations from the limit of nearest-neighbor interactions (a@1
or s@1) to the limit of ultra-long-range interactions (a!1
ands<3). The Hamiltonian~1! generates equations of mo
tion of the form

d2wn

dt2
12F~wn!2F~wn11!2F~wn21!1 (

mÞn
Jm,n~wn2wm!

50, ~2!

where wn5un112un are relative displacements andF(w)
[dV(w)/dw5w2w2.

We assume in what follows thataÞ0 ~the casea50 has
already been considered in Ref.@9#!; in doing so we studied
most extensively two cases: the physically importa
screened Coulomb interactions (s53) and the Kac-Baker
LRI’s (s50). However, in view of the fact~tested numeri-
cally! that all cases with 0<s<3 lead to qualitatively the
same results but the cases50 allows also analytical consid
eration, we discuss only the cases50 from this point on.

In the quasicontinuum limit, treatingn as a continuous
variable @n→x,wn(t)→w(x,t),wm(t)→e(m2n)]xw(x,t)#
and keeping formally all terms in the Taylor expansion
e(m2n)]x, the equation of motion~2! for s50 can be cast in
the operator form@7#

@] t
22JQ~a,]x!#w~x,t !24 sinh2S ]x

2 DF~w!50, ~3!
R1044 ©2000 The American Physical Society
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where

Q~a,]x!5~ea11!
4 sinh2~]x/2!

k224 sinh2~]x/2!
~4!

is a linear pseudodifferential operator, wherek52 sinh(a/2).
The speed of sound c~which is an upper limit of the group
velocity of linear waves!, determined by the expressionc2

511J(11e2a)/(12e2a)2, grows indefinitely asa de-
creases.

We are interested in the stationary soliton solutio
w(x,t)[w(x2vt) propagating with velocityv. In this way
we reduce our problem to a nonlinear eigenvalue prob
with v being a spectral parameter. Indeed, substitutingz5x
2vt and using the continuum approximation 4 sinh2(]x/2)
']x

2 , we can write Eq.~3! in the form @7#

~]z
22s1

2 !~]z
22s2

2 !w~z!5
12

v2
~]z

22k2!w2~z!, ~5!

where the parameterss6 are given by

s6
2 5

1

2 H k2112
v221

v2

6AS k2212
v221

v2 D 2

148k2
c221

v2 J . ~6!

The parameters1 is finite at all velocitiesv>c and tends to
A12 for v→`. The parameters2 vanishes atv5c and tends
to k for v→`. Using the Green’s function method@9# one
can show that stationary soliton solutions exist only for
personic velocitiesv.c. The properties of these solitons a
determined by the ratio ofs1 ands2 . In Fig. 1 we plot the
energy of the soliton solutions of Eq.~3!, which were found
numerically using the method developed in Ref.@9#.

The soliton energy growsmonotonicallywith the velocity
in the case of largea ~see, e.g.,a50.3 in Fig. 1!. In this case
the soliton properties are qualitatively the same as in

FIG. 1. Energy of the pulse solitons vs velocity found nume
cally for different values ofa andJ ~the value ofJ was chosen to
get constantc51.515; see stars in Fig. 3!: a50.3 andJ50.05
~dotted-dashed line!; a50.17 andJ50.0172 ~long-dashed line!;
a50.1 andJ50.0062~dashed line!; a50.05 andJ50.0016~solid
line!.
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limit of nearest-neighbor interactions~NNI’s! for which Eq.
~3! reduces to the Boussinesq equation. It is well known t
this equation has a sech-shaped soliton solutionw(z)
521.5 (v22c2)/cosh2(sz), wheres5A3(v22c2) is the in-
verse soliton width. As indicated above, the energyH;(v2

2c2)3/2 of these solitons is monotonic function of the velo
ity, which means that there is only one soliton state for ea
given value of energy or velocity.

In the case of smalla the soliton properties become muc
more interesting@6,7#. As it was recently shown@7#, two
branchesof stable supersonic pulse solitons should be d
tinguished in this case: low-velocity and high-velocity so
tons, separated by a gap with unstable soliton states.

The solitons of the low-velocity branch are broad~they
have a width much larger than 1/s1), and can be describe
by Eq. ~5! in the approximation (]z

22s1
2 )w'2s1

2 w. In this
approximation the soliton solutions exist in a finite interv
of velocities, c,v,vcr.A(4c221)/3, and change thei
shape from the sech-form atv*c ~see the casev51.6 in
Fig. 2! to the crest-formw(z);exp(2auzu/2) for v→vcr ~see
the casev51.652 in Fig. 2!. Such crest solitons~or peakons!
were first introduced in the theory of shallow water moti
@11,12#.

The solitons of the high-velocity branch are made up
two components:w5wS(z)1wL(z), where the short-range
component

wS~z!'2
s1

2 v2

8
~122g!sech2SA122g

s1z

2 D ~7!

is dominant in the center of the strain, while the long-ran
componentwL(z).2g (s1

2 v2/12)exp(2s2uzu) is dominant
in the tails ~see the casev51.75 in Fig. 2!. It should be
stressed that this division of the soliton body into two co
ponents is not just a mathematical trick. Our present num
cal simulations testify that the solitons of the high-veloc
branch can be considered asbound statesof the short-range
and long-range components: they can be excited such
the relative distance between the components oscilla
However, such internal soliton oscillations are high
damped and should not play an important part in the non
ear dynamics of the system. The parameterg is determined
by the equation

-

FIG. 2. Shapes of pulse solitons found numerically for differe
velocities ata50.17 andJ50.0172.
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gAAg222~A12!g/31153~A21!
s2

s1

A122g, ~8!

with A5k2/s2
2 . This equation, derived in Ref.@7#, has been

analyzed there for small values ofJ anda, for which it has a
unique solution at all values of velocityv. It has been shown
that the interplay of the componentswS(z) andwL(z) results
in this case intononmonotonicdependence of soliton energ
H on the velocity~see, e.g., the casea50.17 in Fig. 1!, so
that there is an energy interval where three soliton states
different velocities exist for each given value of energy.
is shown in Ref.@7#, the low- and high-velocity states~with
dH/dv.0) are stable, while the intermediate state~with
dH/dv,0) is unstable. By the statement that the solit
state is stable or unstable we mean throughout the pape
dynamical stability. That is, when taken as the initial con
tion for Eq. ~2! the stable soliton state preserves its sha
energy, and velocity in the course of time. By contrast,
unstable soliton state is transformed with time into an app
priate stable soliton~or it decays sometimes into sever
stable solitons!.

To sum up the foregoing, there is a demarcation l
J1(a) which separates the plane$a,J% into two regions~see
Fig. 3!, namely: theM-region~with a monotonicdependence
of soliton energy on the velocity! at J,J1(a) and the
N-region~with a nonmonotonicdependence of soliton energ
on the velocity! at J.J1(a). Our numerical calculations~see
Fig. 3! validate the following estimation forJ1(a):

J1~a!.0.23
a4

a1
22a2

, ~9!

with a1.0.25. The spectrum of stable soliton states is c
tinuous and covers all supersonic velocities in theM-region,
while it has a gap~an interval of velocities with unstabl
soliton states! in the N-region. Emerging atJ5J1(a) this
gap increases initially with growth ofJ. However, closer
analytical examination of Eq.~8! shows that subsequentl
this gap starts to decrease and disappears againJ
5J2(a).J1(a), where

FIG. 3. Three regions of the system parameters with qua
tively different properties of the pulse solitons. Solid lines repres
Eqs.~9! and ~10!. The points, marked off as circles and diamond
were calculated numerically. Stars mark the parameters use
Fig. 1.
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J2~a!.
3

8

a4

a2
22a2

, ~10!

with a2.0.16. Besides Eq.~10! we have found analytica
expressions for the soliton energy and impulse, all in v
good agreement with the numerical calculations. But we w
not present these cumbersome formulas in the present p
Instead, we just discuss below the results obtained foJ
.J2(a) with the intent to demonstrate that the soliton fe
tures in this region~let us call it Z-region! are qualitatively
different from those in theN-region.

Indeed, whenJ exceedsJ2(a) there appears an interval o
velocities in which Eq.~8! has two real solutions. They cor
respond to two different types of two-component pulse s
tons which coexist at the same velocity (b andc in Fig. 4!.
Accordingly, the dependence of the soliton energy on
velocity for J.J2(a) is not merely nonmonotonic but take
on aZ-shapedmultivaluedform ~see, e.g., the casesa50.1
anda50.05 in Fig. 1!. The possibility of such a dependenc
has been predicted in Ref.@6# using a variational approach
At that time, however, this prediction was met with disbel
and considered as an artifact of variational approach. Bu
we prove numerically in the present paper, theZ-region re-
ally exists. In this region there is an interval of velocitie

FIG. 5. Demonstration of the dynamical stability of the tw
stable pulse solitons (a andc in Fig. 4! which propagate with the
same velocityv51.64. Herea50.05 andJ50.0016.

-
t

,
in

FIG. 4. Shapes of pulse solitons which coexist at the same
locity v51.64, wherea50.05 andJ50.0016. These solitons ar
also indicated on the inset of Fig. 1.
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where three soliton states of quite different shapes~see Fig.
4! and energiescoexist at the same velocity. The soliton state
with intermediate energy (b in Fig. 4! is always unstable
But the high-energy and low-energy solitons (a andc in Fig.
4! are usually~when dH/dv.0) stable. The high-energ
soliton on the low-velocity branch is broad and has a sin
component. But the low-energy soliton on the high-veloc
branch and the soliton state with intermediate energy b
consist of two components, short-range and long-range o
The coexistence of two different types of stable pulse s
tons at the same velocity causes new interesting phenom
e.g., the synchronous propagation of two solitons with qu
different widths~see Fig. 5!.

In conclusion, we show that the properties of pulse s
tons in anharmonic chains with the long-range interatom
interactions are conveniently mapped onto theaJ-plane~see
Fig. 3!. One can recognize in this plane three regions w
qualitatively different properties of the pulse solitons. T
M- andN-regions were distinguished and discussed in R
@6,7#, whereas theZ-region ~that is the region ofultra-long-
range interatomic interactions! is proven to exist in the
s.

. A

o-

ys
e

th
s.

i-
na,
e

i-
c

h

s.

present paper. In this region there exists an interval of
locities where two types of stable pulse solitons coexist
each value of the velocity. The high-energy soliton is bro
and has only a single component whereas the low-ene
soliton consists of two components, short-range and lo
range ones, and can be considered as a bound state of
components. It should be stressed that this phenomenon
curs even for LRI’s ofvery small intensity~hundreds times
less than the intensity of NNI’s, as seen on Fig. 3! if only the
radius of LRI’s is large enough. It is important that the c
existence of two types of stable solitons does occur not o
for the Kac-Baker LRI’s discussed in this paper; on the co
trary, it is rather a common phenomenon. In particular,
also have shown that it exists in anharmonic chains w
weakly screened Coulomb interactions between charged
ticles.
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